Communication through entanglement

Is it possible to use quantum entanglement to communicate faster than light?

Here’s a suggestion for how we might achieve just such a thing. Two people each possess one qubit of an entangled pair in the state ⟩:

Screen Shot 2018-07-17 at 8.03.53 PM

The owner of the second qubit then decides whether or not to apply some quantum gate U to their qubit. Immediately following this, the owner of the first qubit measures their qubit.

If the application of U to the second qubit changes the amplitude distribution over the first qubit, then the measurement can be used to communicate a message between the two people instantaneously! Why? Well, initially 0 and 1 are expected with equal probability. But if applying U makes these probabilities unequal, then the observation of a 0 or 1 carries evidence as to whether or not U was applied. (In an extreme case, applying U could make it guaranteed that the qubit would be observed as |0⟩, in which case observation of |1⟩ ensures that U was not applied.)

In this way, somebody could send information across by encoding it in a string of decisions about whether or not to apply U to a shared entangled pair.

It might seem a little strange that doing something to your qubit over here could affect the state of their qubit over there. But this is quantum mechanics, and quantum mechanics is very, very strange. Remember that the two qubits are entangled with one another. We are already guaranteed that what happens to one can affect the state of the other instantaneously – after all, if we measure the second qubit and find it in the state |0⟩, the first qubit’s state is instantaneously “collapsed” into the state |0⟩ as well. (This fact alone cannot be used to communicate messages, because before measuring the second qubit, its owner has no control over which of the two states it will end up in.)

So whether or not our scheme will work cannot be ruled out a priori. We must work out the math for ourselves to see if applying U to qubit 2 can successfully warp the probability distribution of qubit 1, thus sending information between the two instantaneously.

First, we’ll describe our single qubit gate U as a matrix.

Screen Shot 2018-07-23 at 1.04.00 AM.png

a, b, c, and d are complex numbers. Can they have any possible values?

No. U must preserve the normalization of states it acts on. In other words, for U to represent a physically possible transformation of a qubit, it cannot transform physically possible states into physically impossible states.

What precise constraints does this entail? It turns out that the following two suffice to ensure the normalization condition:

Screen Shot 2018-07-23 at 1.06.35 AM.png

Alright. Now, we have our general description of a single-qubit gate. Of course, the qubit that U is operating on is a part of an entangled pair. It is an irreducible component of a two-qubit system. So we can’t actually describe it as just a single qubit.

Instead, we need to describe the state of both qubits, which, I’ll remind you, looks like:

Screen Shot 2018-07-23 at 1.09.48 AM.png

A 2×2 matrix can’t operate on a vector with four components. What we need is a two-qubit quantum gate that corresponds to applying U to qubit 2 while leaving qubit 1 alone. “Leaving a qubit alone” is equivalent to applying the identity gate I to it, which just leaves the state unchanged.

Screen Shot 2018-07-23 at 1.13.42 AM.png

So what we really want is the 4×4 matrix that corresponds to applying U to qubit 2 and I to qubit 1. It turns out that we can generate this matrix by simply taking the tensor product of U with I:

Screen Shot 2018-07-23 at 1.17.56 AM.png

Alright, now we’re ready to see what happens when we apply this gate to ⟩!

Screen Shot 2018-07-23 at 1.21.19 AM.png

This state sure looks different than the state we started with! But is it different enough to have carried some information between the qubits? Let’s now look at the probabilities for measuring qubit 1 in the states 0 and 1:

Screen Shot 2018-07-23 at 1.26.11 AM.png

Screen Shot 2018-07-23 at 1.29.32 AM.png

Screen Shot 2018-07-23 at 1.31.24 AM.png

Remember the constraints on the possible values of a, b, c, and d we started with?

Screen Shot 2018-07-23 at 1.32.56 AM.png

Which leads us to the final answer!

Screen Shot 2018-07-23 at 1.34.53 AM.png

Sadly, it looks like our method won’t work to produce faster-than-light communication. No matter what gate we apply to the second qubit, it has no effect on the observed probabilities of the first. And therefore, no information can be sent by applying U.

Of course, this does not rule out all possible ways to attempt to utilize entanglement to communicate faster-than-light. But it does provide a powerful demonstration of the way in which such attempts are defeated by the laws of quantum mechanics.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s