Six Case Studies in Consequentialist Reasoning

Consequentialism is a family of moral theories that say that an act is moral or immoral based on its consequences. If an act has overall good consequences then it is moral, and if it has bad consequences then it is immoral. What precisely counts as a “good” or “bad” consequence is what distinguishes one consequentialist theory from another. For instance, act utilitarians say that the only morally relevant feature of the consequences of our actions is the aggregate happiness and suffering produced, while preference utilitarians say that the relevant feature of the consequences is the number and strength of desires satisfied. Another form of consequentialism might strike a balance between aggregate happiness and social equality.

What all these different consequentialist theories have in common is that the ultimate criteria being used to evaluate the moral status of an action is only a function of the consequences of that action, as opposed to, say, the intentions behind the action, or whether the action is an instance of a universalizable Kantian rule.

In this essay, we’ll explore some puzzles in consequentialist theories that force us to take a more nuanced and subtle view of consequentialism. These puzzles are all adapted from Derek Parfit’s Reasons and Persons, with very minor changes.

First, we’ll consider a simple puzzle regarding how exactly to evaluate the consequences of one’s actions, when one is part of a collective that jointly accomplishes some good.

Case 1: There are 100 miners stuck in a mineshaft with flood waters rising. These men can be brought to the surface in a lift raised by weights on long levers. The leverage is such that just four people can stand on a platform and provide sufficient weight to raise the lift and save the lives of the hundred men. But if any fewer than four people stand on the platform, it will not be enough to raise the lift. As it happens, you and three other people happen to be standing there. The four of you stand on the platform, raising the lift and saving the lives of the hundred men.

The question for us to consider is, how many lives did you save by standing on the platform? The answer to this question matters, because to be a good consequentialist, each individual needs to be able to compare their contribution here to the contribution they might make by going elsewhere. As a first thought, we might say that you saved 100 lives by standing on the platform. But the other three people were in the same position as you, and it seems a little strange to say that all four of you saved 100 lives each (since there weren’t 400 lives saved total). So perhaps we want to say that each of you saved one quarter of the total: 25 lives each.

Parfit calls this the Share-of-the-Total View. We can characterize this view as saying that in general, if you are part of a collective of N people who jointly save M lives, then your share of lives saved is M/N.

There are some big problems with this view. To see this, let’s amend Case 1 slightly by adding an opportunity cost.

Case 2: Just as before, there are 100 miners stuck in a mineshaft with flood waters rising, and they can be saved by four or more people standing on a platform. This time though, you and four other people happen to be standing there. The other four are going to stand on the platform no matter what you do. Your choice is either to stand on the platform, or to go elsewhere to save 10 lives. What should you do?

The correct answer here is obviously that you should leave to save the 10 lives. The 100 miners will be saved whether you stay or leave, and the 10 lives will be lost if you stick around. But let’s consider what the Share-of-the-Total View says. According to this view, if you stand on the platform, your share of the lives saved is 100/5 = 20. And if you leave to go elsewhere, you only save 10 lives. So you save more lives by staying and standing on the platform!

This is a reductio of the Share-of-the-Total View. We must revise this view to get a sensible consequentialist theory. Parfit’s suggestion is that we say that when you join others who are doing good, the good that you do is not just your own share of the total benefit. You should also add to your share the change that you caused in the shares of the benefits produced by each other by joining. On their own, the four would each have a share of 25 lives. So by joining, you have a share of 20 lives, minus the 5 lives that have been reduced from the share of each of the other four. In other words, by joining, you have saved 20 – 5(4) lives, in other words, 0 lives. And of course, this is the right answer, because you have done nothing at all by stepping onto the platform!

Applying our revised view to Case 1, we see that if you hadn’t stepped onto the platform, zero lives would be saved. By stepping onto the platform, 100 lives are saved. So your share of those lives is 25, plus 25 lives for each of the others that would have had zero without you. So your share is actually 100 lives! The same applies to the others, so in our revised view, each of the four is responsible for saving all 100 lives. Perhaps on reflection this is not so unintuitive; after all, it’s true for each of them that if they change their behavior, 100 lives are lost.

Case 3: Just as in Case 2, there are 100 miners stuck in a mineshaft. You and four others are standing on the platform while the miners are slowly being raised up. Each of you know of an opportunity to save 10 lives elsewhere (a different 10 lives for each of you), but to successfully save the lives you have to leave immediately, before the miners are rescued. The five of you have to make your decision right away, without communicating with each other.

We might think that if each of the five of you reasons as before, each of you will go off and save the other 10 lives (as by staying, they see that they are saving zero lives). In the end, 50 lives will be saved and 100 lost. This is not good! But in fact, it’s not totally clear that this is the fault of our revised view. The problem here is lack of information. If each of the five knew what the other four planned on doing, then they would make the best decision (if all four planned to stay then the fifth would leave, and if one of the other four planned to leave then the fifth would stay). As things stand, perhaps the best outcome would be that all five stay on the platform (losing the opportunity to save 10 extra lives, but ensuring the safety of the 100). If they can use a randomized strategy, then the optimal strategy is to each stay on the platform with probability 97.2848% (saving an expected 100.66 lives)

Miners Consequentialism

Let’s move on to another type of scenario.

Case 4: X and Y simultaneously shoot and kill me. Either shot, by itself, would have killed.

The consequence of X’s action is not that I die, because if X had not shot, I would have died by Y’s bullet. And the same goes for Y. So if we’re evaluating the morality of X or Y’s action based on its consequences, it seems that we have to say that neither one did anything immoral. But of course, the two of them collectively did do something immoral by killing me. What this tells us that the consequentialist’s creed cannot be “an act is immoral if its consequences are bad”, as an act can also be immoral if it is part of a set of acts whose collective consequences are bad.

Inheriting immorality from group membership has some problems, though. X and Y collectively did something immoral. But what about the group X, Y, and Barack Obama, who was napping at home when this happened? The collective consequences of their actions were bad as well. So did Obama do something immoral too? No. We need to restrict our claim to the following:

“When some group together harm or benefit other people, this group is the smallest group of whom it is true that, if they had all acted differently, the other people would not have been harmed, or benefited.” -Parfit

A final scenario involves the morality of actions that produce imperceptible consequences.

Case 5: One million torturers stand in front of one million buttons. Each button, if pushed, induces a tiny stretch in each of a million racks, each of which has a victim on it. The stretch induced by a single press of the button is so minuscule that it is imperceptible. But the stretch induced by a million button presses produces terrible pain in all the victims.

Clearly we want to say that each torturer is acting immorally. But the problem is that the consequences of each individual torturer’s action are imperceptible! It’s only when enough of the torturers press the button that the consequence becomes perceptible. So what we seem to be saying is that it’s possible to act immorally, even though your action produces no perceptible change in anybody’s conscious experience, if your action is part of a collection of actions that together produce negative changes in conscious experiences.

This is already unintuitive. But we can make it even worse.

Case 6: Consider the final torturer of the million. At the time that he pushes his button, the victims are all in terrible agony, and his press doesn’t make their pain any perceptibly worse. Now, imagine that instead of there being 999,999 other torturers, there are zero. There is just the one torturer, and the victims have all awoken this morning in immense pain, caused by nobody in particular. The torturer presses the button, causing no perceptible change in the victims’ conditions. Has the torturer done something wrong?

It seems like we have to say the same thing about the torturer in Case 6 as we did in Case 5. The only change is that Nature has done the rest of the harm instead of other human beings, but this can’t matter for the morality of the torturer’s action. But if we believe this, then the scope of our moral concerns is greatly expanded, to a point that seems nonsensical. My temptation here is to say “all the worse for consequentialism, then!” and move to a theory that inherently values intentions, but I am curious if there is a way to make a consequentialist theory workable in light of these problems.