Computing truth values of sentences of arithmetic, or: Math is hard

Previously I talked about the arithmetic hierarchy for sets, and how it relates to the decidability of sets. There’s also a parallel notion of the arithmetic hierarchy for sentences of Peano arithmetic, and it relates to the difficulty of deciding the truth value of those sentences.

Truth value here and everywhere else in this post refers to truth value in the standard model of arithmetic. Truth value in the sense of “being true in all models of PA” is a much simpler matter; PA is recursively axiomatizable and first order logic is sound and complete, so any sentence that’s true in all models of PA can be eventually proven by a program that enumerates all the theorems of PA. So if a sentence is true in all models of PA, then there’s an algorithm that will tell you that in a finite amount of time (though it will run forever on an input that’s false in some models).

Not so for truth in the standard model! As we’ll see, whether a sentence evaluates to true in the standard model of arithmetic turns out to be much more difficult to determine in general. Only for the simplest sentences can you decide their truth value using an ordinary Turing machine. And the set of all sentences is in some sense infinitely uncomputable (you’ll see in a bit in what sense exactly this is).

What we’ll discuss is a way to convert sentences of Peano arithmetic to computer programs. Before diving into that, though, one note of caution is necessary: the arithmetic hierarchy for sentences is sometimes talked about purely syntactically (just by looking at the sentence as a string of symbols) and other times is talked about semantically (by looking at logically equivalent sentences). Here I will be primarily interested in the entirely-syntactic version of the arithmetic hierarchy. If you’ve only been introduced to the semantic version of the hierarchy, what you see here might differ a bit from what you recognize.

Let’s begin!

The simplest types of sentences have no quantifiers at all. For instance…

0 = 0
2 ⋅ 2 < 7
(2 + 2 = 4) → (2 ⋅ 2 = 4)

Each of these sentences can be translated into a program quite easily, since +, ⋅, =, and < are computable. We can translate the → in the third sentence by converting it into a conjunction:

## (2 + 2 = 4) → (2 ⋅ 2 = 4)
not(2 + 2 == 4 and not 2 * 2 == 4)

Slightly less simple-looking are sentences with bounded quantifiers:

∀x < 10 (x + 0 = x)
∃x < 100 (x + x = x)
∀x < 5 ∃y < 7 (x > 1 → x⋅y = 12)
∃x < 5 ∀y < x ∀z < y (y⋅z ≠ x)

In each of these examples, the bounded quantifier could in principle be expanded out, leaving us with a finite quantifier-free sentence. This should suggest to us that adding bounded quantifiers doesn’t actually increase the computational difficulty.

We can translate sentences with bounded quantifiers into programs by converting each bounded quantifier to a for loop. The translation slightly differently depending on whether the quantifier is universal or existential:

def Aupto(n, phi):
    for x in range(n):
        if not phi(x):
            return False
    return True
def Elessthan(n, phi):
    for x in range(n):
        if phi(x):
            return True
    return False

Note that the second input needs to be a function; reflecting that it’s a sentence with free variables. Now we can quite easily translate each of the examples, using lambda notation to more conveniently define the necessary functions

## ∀x<10 (x + 0 = x)
Aupto(10, lambda x: x + 0 == x)

## ∃x<100 (x + x = x)
Elessthan(100, lambda x: x + x == x)

## ∀x<5 ∃y<7 ((x > 1) → (x*y = 12))
Aupto(5, lambda x: Elessthan(7, lambda y: not (x > 1 and x * y != 12)))

## ∃x<5 ∀y<x ∀z<y (y⋅z ≠ x)
Elessthan(5, lambda x: Aupto(x, lambda y: Aupto(y, lambda z: y * z != x)))

Each of these programs, when run, determines whether or not the sentence is true. Hopefully it’s clear how we can translate any sentence with bounded quantifiers into a program of this form. And when we run the program, it will determine the truth value of the sentence in a finite amount of time.

So far, we’ve only talked about the simplest kinds of sentences, with no unbounded quantifiers. There are two names that both refer to this class: Π0 and Σ0. So now you know how to write a program that determines the truth value of any Σ00 sentence!

We now move up a level in the hierarchy, by adding unbounded quantifiers. These quantifiers must all appear out front and be the same type of quantifier (all universal or all existential).

Σ1 sentences: ∃x1 ∃x2 … ∃xk Phi(x1, x2, …, xk), where Phi is Π0.
Π1 sentences: ∀x1 ∀x2 … ∀xk Phi(x1, x2, …, xk), where Phi is Σ0.

Some examples of Σ1 sentences:

∃x ∃y (x⋅x = y)
∃x (x⋅x = 5)
∃x ∀y < x (x+y > x⋅y)

And some Π1 sentences:

∀x (x + 0 = x)
∀x ∀y (x + y < 10)
∀x ∃y < 10 (y⋅y + y = x)

We can translate unbounded quantifiers as while loops:

def A(phi):
    x = 0
    while True:
        if not phi(x):
            return False
        x += 1

def E(phi):
    x = 0
    while True:
        if phi(x):
            return True
        x += 1

There’s a radical change here from the bounded case, which is that these functions are no longer guaranteed to terminate. A(Φ) never returns True, and E(Φ) never returns False. This reflects the nature of unbounded quantifiers. An unbounded universal quantifier is claiming something to be true of all numbers, and thus there are infinitely many cases to be checked. Of course, the moment you find a case that fails, you can return False. But if the universally quantified statement is true of all numbers, then the function will have to keep searching through the numbers forever, hoping to find a counterexample. With an unbounded existential quantifier, all one needs to do is find a single example where the statement is true and then return True. But if there is no such example (i.e. if the statement is always false), then the program will have to search forever.

I encourage you to think about these functions for a few minutes until you’re satisfied that not only do they capture the unbounded universal and existential quantifiers, but that there’s no better way to define them.

Now we can quite easily translate our example sentences as programs:

## ∃x ∃y (x⋅x = y)
E(lambda x: E(lambda y: x * x == y))

## ∃x (x⋅x = 5)
E(lambda x: x * x == 5)

## ∃x ∀y < x (x+y > x⋅y)
E(lambda x: Aupto(x, lambda y: x + y > x * y))

## ∀x (x + 0 = x)
A(lambda x: x + 0 == x)

## ∀x ∀y (x + y < 10)
A(lambda x: A(lambda y: x + y < 10))

## ∀x ∃y < 10 (y⋅y + y = x)
A(lambda x: Elessthan(10, y * y + y == x))

The first is a true Σ1 sentence, so it terminates and returns True. The second is a false Σ1 sentence, so it runs forever. See if you can figure out if the third ever halts, and then run the program for yourself to see!

The fourth is a true Π1 sentence, which means that it will never halt (it will keep looking for a counterexample and failing to find one forever). The fifth is a false Π1 sentence, so it does halt at the first moment it finds a value of x and y whose sum is 10. And figure out the sixth for yourself!

The next level of the hierarchy involves alternating quantifiers.

Σ2 sentences: ∃x1 ∃x2 … ∃xk Φ(x1, x2, …, xk), where Φ is Π1.
Π2 sentences: ∀x1 ∀x2 … ∀xk Φ(x1, x2, …, xk), where Φ is Σ1.

So now we’re allowed sentences with a block of one type of unbounded quantifier followed by a block of the other type of unbounded quantifier, and ending with a Σ0 sentence. You might guess that the Python functions we’ve defined already are strong enough to handle this case (and indeed, all higher levels of the hierarchy), and you’re right. At least, partially. Try running some examples of Σ2 or Π2 sentences and see what happens. For example:

## ∀x ∃y (x > y)
A(lambda x: E(lambda y: x > y))

It runs forever! If we were to look into the structure of this program, we’d see that A(Φ) only halts if it finds a counterexample to Φ, and E(Φ) only halts if it finds an example of Φ. In other words A(E(Φ)) only halts if A finds out that E(Φ) is false; but E(Φ) never halts if it’s false! The two programs’ goals are diametrically opposed, and as such, brought together like this they never halt on any input.

The same goes for a sentence like ∃x ∀y (x > y): for this program to halt, it would require that ∀y (x > y) is found to be true for some value of x, But ∀y (x > y) will never be found true, because universally quantified sentences can only be found false! This has nothing to do with the (x > y) being quantified over, it’s entirely about the structure of the quantifiers.

No Turing machine can decide the truth values of Σ2 and Π2 sentences. There’s a caveat here, related to the semantic version of the arithmetic hierarchy. It’s often possible to take a Π2 sentence like ∀x ∃y (y + y = x) and convert it to a logically equivalent but Π1 sentence like ∀x ∃y<x (y + y = x). This translation works, because y + y = x is only going to be true if y is less than or equal to x. Now we have a false Π1 sentence rather than a false Π2 sentence, and as such we can find a counterexample and halt.

We can talk about a sentence’s essential level on the arithmetic hierarchy, which is the lowest level of the logically equivalent sentence. It’s important to note here that “logically equivalent sentence” is a cross-model notion: A and B are logically equivalent if and only if they have the same truth values in every model of PA, not just the standard model. The soundness and completeness of first order logic, and the recursive nature of the axioms of PA, tells us that the set of sentences that are logically equivalent to a given sentence of PA is recursively enumerable. So we can generate these sentences by searching for PA proofs of equivalence and keeping track of the lowest level of the arithmetic hierarchy attained so far.

Even when we do this, we will still find sentences that have no logical equivalents below Σ2 or Π2. These sentences are essentially uncomputable; not just uncomputable in virtue of their form, but truly uncomputable in all of their logical equivalents. However, while they are uncomputable, they would become computable if we had a stronger Turing machine. Let’s take another look at the last example:

## ∀x ∃y (x > y)
A(lambda x: E(lambda y: x > y))

Recall that the problem was that A(E(Φ)) only halts if E(Φ) returns False, and E(Φ) can only return True. But if we had a TM equipped with an oracle for the truth value of E(Φ) sentences, then maybe we could evaluate A(E(Φ))!

Let’s think about that for a minute more. What would an oracle for the truth value of Σ1 sentences be like? One thing that would work is if we could run E(Φ) “to infinity” and see if it ever finds an example, and if not, then return False. So perhaps an infinite-time Turing machine would do the trick. Another way would be if we could simply ask whether E(Φ) ever halts! If it does, then ∃y (x > y) must be true, and if not, then it must be false.

So a halting oracle suffices to decide the truth values of Σ1 sentences! Same for Π1 sentences: we just ask if A(Φ) ever halts and return False if so, and True otherwise.

If we run the above program on a Turing machine equipped with a halting oracle, what will we get? Now we can evaluate the inner existential quantifier for any given value of x. So in particular, for x = 0, we will find that Ey (x > y) is false. We’ve found a counterexample, so our program will terminate and return False.

On the other hand, if our sentence was true, then we would be faced with the familiar feature of universal quantifiers: we’d run forever looking for a counterexample and never find one. So to determine that this sentence is true, we’d need an oracle for the halting problem for this new more powerful Turing machine!

Here’s a summary of what we have so far:

TM = Ordinary Turing Machine
TM2 = TM + oracle for TM
TM3 = TM + oracle for TM2

The table shows what type of machine suffices to decide the truth value of a sentence, depending on where on the arithmetic hierarchy the sentence falls and whether the sentence is true or false.

We’re now ready to generalize. In general, Σn sentences start with a block of existential quantifiers, and then alternate between blocks of existential and universal quantifiers n – 1 times before ending in a Σ0 sentence. Πn sentences start with a block of universal quantifiers, alternates quantifiers n – 1 times, and then ends in a Σ0 sentence. And as you move up the arithmetic hierarchy, it requires more and more powerful halting oracles to decide whether sentences are true:

(TM = ordinary Turing machine, TMn+1 = TM + oracle for TMn)

If we define Σω to be the union of all the Σ classes in the hierarchy, and Πω the union of the Π classes, then deciding the truth value of Σω ⋃ Πω (the set of all arithmetic sentences) would require a TMω – a Turing machine with an oracle for TM, TM2, TM3, and so on. Thus the theory of true arithmetic (the set of all first-order sentences that are true of ℕ), is not only undecidable, it’s undecidable with a TM2, TM3, and TMn for every n ∈ ℕ. At every level of the arithmetic hierarchy, we get new sentences that are essentially on that level (not just sentences that are superficially on that level in light of their syntactic form, but sentences which, in their simplest possible logically equivalent form, lie on that level).

This gives some sense of just how hard math is. Just understanding the first-order truths of arithmetic requires an infinity of halting oracles, each more powerful than the last. And that says nothing about the second-order truths of arithmetic! That would require even stronger Turing machines than TMω – Turing machines that have halting oracles for TMω, and then TMs with oracles for that, and so on to unimaginable heights (just how high we must go is not currently known).

The subtlety of Gödel’s second incompleteness theorem

Gödel’s second incompleteness theorem is an order of magnitude more subtle than his first. It’s commonly summarized as “no consistent theory strong enough to do arithmetic can prove its own consistency.” But there’s a lot of subtlety in both the “strong enough to do arithmetic” and the “prove its own consistency.” First of all, what exactly counts as strong enough to do arithmetic? Peano arithmetic certainly does, but it has an infinite axiom schema. Do any finite theories meet the criterion of “strong enough to do arithmetic”? It urns out that the answer to this is yes! Robinson arithmetic, which is what you get if you remove the infinite axiom schema of induction from PA, meets the requirement.

There are weaker theories of arithmetic, like Presburger arithmetic (which has only addition) and Skolem arithmetic (only multiplication), that don’t meet the criterion, and are therefore not subject to the incompleteness theorems. And it turns out that both of these theories are actually decidable! This is even stronger than being sound and complete; soundness and completeness tell us that there’s an algorithm that determines after a finite amount of time that a given sentence is a tautology, but not necessarily that such an algorithm exists to determine that a sentence is NOT a tautology. Decidability gives us both: not only can we classify any tautology as such in a finite time, we can also classify any non-tautology as such in a finite time.

The amount of arithmetic we need is exactly the amount that Gödel uses to prove the incompleteness theorems. This has two parts: one, the theory must express enough arithmetic to do Gödel encoding (and therefore to express the notion of “provability”), and two, the theory must be able to formalize diagonalization. Dan Willard came up with theories that formalize enough arithmetic to do the first but not the second: these are theories that can talk about their own provability via Gödel coding, but are still too weak to be subject to the incompleteness theorems. Thus, these theories can actually prove their own consistency! These fascinating theories are called self-verifying theories.

Everything I’ve said so far has been about the subtlety of the notion of “strong enough to do arithmetic”. Now I want to talk about the subtlety of the notion of “proving one’s own consistency.” I’ll do this by first taking a brief interlude to talk about an argument I recently saw against the Consistency Thesis in philosophy of math that uses this notion. A friend of mine writes:

Consistency is a weak soundness property.

Here’s what I’ll call the Consistency Thesis: (Mathematical sentences are justified and/or true when they are part of a consistent theory.) What I want to do is to raise a problem for that thesis. Maintaining the Consistency Thesis leads to bizarre mathematical beliefs which don’t lend themselves to being true or justified. A merely ‘consistent’ theory can claim P(0), P(1), and so on, and yet claim that there’s some n for which ¬P(n). Such a theory is omega-inconsistent.

There are mathematical theories which despite their syntactic consistency, claim to be inconsistent. They will claim to be able to derive that 0=1 and yet never derive 0=1. One example of a consistent but unsound theory would be this: [suppose we add to ZFC the new axiom “ZFC is inconsistent”. If ZFC is consistent, then the new theory ZFC’ is consistent (by Godel’s second incompleteness theorem), even though it falsely proves that ZFC is inconsistent.]

So far, I’ve only mentioned omega-inconsistent theories. I should also mention that there are omega-consistent theories which are arithmetically unsound. A much stronger soundness property would be soundness in omega-logic, which entails consistency, omega-consistency, and arithmetical soundness.

Here’s the response I gave:

You say that an adherent to the Consistency Thesis believes in mathematical theories that are in fact consistent (no contradictions can be proved from them) but claim to be inconsistent; for instance ZFC + ¬Con(ZFC). This bit about “claiming to be inconsistent” is subtler than it might initially seem. There’s a very important difference between Con(ZFC) and “ZFC is consistent”. A first order theory can’t talk directly about its own consistency, it can only talk about properties of the objects in its models. We are allowed an indirect method to talk about consistency of theories, Gödel encoding. But this method has problems.

Gödel encoding allows us to write down statements that, if understood to be about the natural numbers, are equivalent to the assertion that a theory proves a contradiction. But this “if understood to be about the natural numbers” is a very important qualification, because no first order theory categorically defines the natural numbers (i.e. no first order theory has as its only model the natural numbers). More generally, no theory within a logic that has a sound, complete, and finitary proof system categorically describes the natural numbers (these are the only logics that a Formalist will see as well-defined, by the way).

What this means is that when we write “Con(ZFC)”, we’re actually using a short-hand for a complicated sentence about the objects in our models, and this complicated sentence is NOT equivalent to the claim that no contradiction can be proven from ZFC. Con(ZFC) could be false in a model even if ZFC is consistent, and Con(ZFC) could be true in a model even if ZFC is inconsistent, so long as that model is not the standard natural numbers.

So the adherent of the Consistency Thesis is not actually committed to weird beliefs about a theory being consistent and claiming its own consistency; they are just committed to the belief that the natural numbers are not well-defined.

The same objection applies to the claim that they have to accept as valid theories that claim P(0), P(1), and so on, but also that there’s some n for which ¬P(n). That’s true, and that’s fine! One can just say that such theories are not theories of the standard natural numbers; the n for which ¬P(n) is some other type of mathematical object that is not a natural number.

A TL;DR for my response: “Con(T)” only means “T is consistent” if T is about the natural numbers. Furthermore, the theories that assert their own inconsistency never have the natural numbers as a model. So it’s ultimately not very weird that these theories assert “¬Con(T)”… this statement doesn’t actually mean “T is inconsistent” in any of the models of the theory!