# Measurement without interaction in quantum mechanics

In front of you is a sealed box, which either contains nothing OR an incredibly powerful nuclear bomb, the explosion of which threatens to wipe out humanity permanently. Even worse, this bomb is incredibly unstable and will blow up at the slightest contact with a single photon. This means that anybody that opens the box to look inside and see if there really is a bomb in there would end up certainly activating it and destroying the world. We don’t have any way to deactivate the bomb, but we could maintain it in isolation for arbitrarily long, despite the prohibitive costs of totally sealing it off from all contact.

Now, for obvious reasons, it would be extremely useful to know whether or not the bomb is actually active. If it’s not, the world can breathe a sigh of relief and not worry about spending lots of money on keeping it sealed away. And if it is, we know that the money is worth spending.

The obvious problem is that any attempt to test whether there is a bomb inside will involve in some way interacting with the box’s contents. And as we know, any such interaction will cause the bomb to detonate! So it seems that we’re stuck in this unfortunate situation where we have to act in ignorance of the full details of the situation. Right?

Well, it turns out that there’s a clever way that you can use quantum mechanics to do an “interaction-free measurement” that extracts some information from the system without causing the bomb to explode!

To explain this quantum bomb tester, we have to first start with a simpler system, a classic quantum interferometer setup:

At the start, a photon is fired from the laser on the left. This photon then hits a beam splitter, which deflects the path of the photon with probability 50% and otherwise does nothing. It turns out that a photon that gets deflected by the beam splitter will pick up a 90º phase, which corresponds to multiplying the state vector by exp(iπ/2) = i. Each path is then redirected to another beam splitter, and then detectors are aligned across the two possible trajectories.

What do we get? Well, let’s just go through the calculation:

We get destructive interference, which results in all photons arriving at detector B.

Now, what happens if you add a detector along one of the two paths? It turns out that the interference vanishes, and you find half the photons at detector A and the other half at detector B! That’s pretty weird… the observed frequencies appear to depend on whether or not you look at which path the photon went on. But that’s not quite right, because it turns out that you still get the 50/50 statistics whenever you place anything along one path whose state is changed by the passing photon!

Huh, that’s interesting… it indicates that by just looking for a photon at detector A, we can get evidence as to whether or not something interacted with the photon on the way to the detector! If we see a photon show up at the detector, then we know that there must have been some device which changed in state along the bottom path. Maybe you can already see where we’re going with this…

We have to put the box in the bottom path in such a way that if the box is empty, then when the photon passes by, nothing will change about either its state or the state of the photon. And if the box contains the bomb, then it will function like a detector (where the detection corresponds to whether or not the bomb explodes)!

Now, assuming that the box is empty, we get the same result as above. Let’s calculate the result we get assuming that the box contains the bomb:

Something really cool happens here! We find that if the bomb is active, there is a 25% chance that the photon arrives as A without the bomb exploding. And remember, the photon arriving at detector A allows us to conclude with certainty that the bomb is active! In other words, this setup gives us a 25% chance of safely extracting that information!

25% is not that good, you might object. But it sure is better than 0%! And in fact, it turns out that you can strengthen this result, using a more complicated interferometer setup to learn with certainty whether the bomb is active with an arbitrarily small chance of setting off the bomb!

There’s so many weird little things about quantum mechanics that defy our classical intuitions, and this “interaction-free measurements” is one of my new favorites.

# Is the double slit experiment evidence that consciousness causes collapse?

No! No no no.

This might be surprising to those that know the basics of the double slit experiment. For those that don’t, very briefly:

A bunch of tiny particles are thrown one by one at a barrier with two thin slits in it, with a detector sitting on the other side. The pattern on the detector formed by the particles is an interference pattern, which appears to imply that each particle went through both slits in some sense, like a wave would do. Now, if you peek really closely at each slit to see which one each particle passes through, the results seem to change! The pattern on the detector is no longer an interference pattern, but instead looks like the pattern you’d classically expect from a particle passing through only one slit!

When you first learn about this strange dependence of the experimental results on, apparently, whether you’re looking at the system or not, it appears to be good evidence that your conscious observation is significant in some very deep sense. After all, observation appears to lead to fundamentally different behavior, collapsing the wave to a particle! Right?? This animation does a good job of explaining the experiment in a way that really pumps the intuition that consciousness matters:

(Fair warning, I find some aspects of this misleading and just plain factually wrong. I’m linking to it not as an endorsement, but so that you get the intuition behind the arguments I’m responding to in this post.)

The feeling that consciousness is playing an important role here is a fine intuition to have before you dive deep into the details of quantum mechanics. But now consider that the exact same behavior would be produced by a very simple process that is very clearly not a conscious observation. Namely, just put a single spin qubit at one of the slits in such a way that if the particle passes through that slit, it flips the spin upside down. Guess what you get? The exact same results as you got by peeking at the screen. You never need to look at the particle as it travels through the slits to the detector in order to collapse the wave-like behavior. Apparently a single qubit is sufficient to do this!

It turns out that what’s really going on here has nothing to do with the collapse of the wave function and everything to do with the phenomenon of decoherence. Decoherence is what happens when a quantum superposition becomes entangled with the degrees of freedom of its environment in such a way that the branches of the superposition end up orthogonal to each other. Interference can only occur between the different branches if they are not orthogonal, which means that decoherence is sufficient to destroy interference effects. This is all stuff that all interpretations of quantum mechanics agree on.

Once you know that decoherence destroys interference effects (which all interpretations of quantum mechanics agree on), and also that a conscious observing the state of a system is a process that results in extremely rapid and total decoherence (which everybody also agrees on), then the fact that observing the position of the particle causes interference effects to vanish becomes totally independent of the question of what causes wave function collapse. Whether or not consciousness causes collapse is 100% irrelevant to the results of the experiment, because regardless of which of these is true, quantum mechanics tells us to expect observation to result in the loss of interference!

This is why whether or not consciousness causes collapse has no real impact on what pattern shows up in the wall. All interpretations of quantum mechanics agree that decoherence is a thing that can happen, and decoherence is all that is required to explain the experimental results. The double slit experiment provides no evidence for consciousness causing collapse, but it also provides no evidence against it. It’s just irrelevant to the question! That said, however, given that people often hear the experiment presented in a way that makes it seem like evidence for consciousness causing collapse, hearing that qubits do the same thing should make them update downwards on this theory.

# Decoherence is not wave function collapse

In the double slit experiment, particles travelling through a pair of thin slits exhibit wave-like behavior, forming an interference pattern where they land that indicates that the particles in some sense travelled through both slits.

Now, suppose that you place a single spin bit at the top slit, which starts off in the state |↑⟩ and flips to |↓⟩ iff a particle travels through the top slit. We fire off a single particle at a time, and then each time swap out that spin bit for a new spin bit that also starts off in the state |↑⟩. This serves as an extremely simple measuring device which encodes the information about which slit each particle went through.

Now what will you observe on the screen? It turns out that you’ll observe the classically expected distribution, which is a simple average over the two individual possibilities without any interference.

Okay, so what happened? Remember that the first pattern we observed was the result of the particles being in a superposition over the two possible paths, and then interfering with each other on the way to the detector screen. So it looks like simply having one bit of information recording the path of the particle was sufficient to collapse the superposition! But wait! Doesn’t this mean that the “consciousness causes collapse” theory is wrong? The spin bit was apparently able to cause collapse all by itself, so assuming that it isn’t a conscious system, it looks like consciousness isn’t necessary for collapse! Theory disproved!

No. As you might be expecting, things are not this simple. For one thing, notice that this ALSO would prove as false any other theory of wave function collapse that doesn’t allow single bits to cause collapse (including anything about complex systems or macroscopic systems or complex information processing). We should be suspicious of any simple argument that claims to conclusively prove a significant proportion of experts wrong.

To see what’s going on here, let’s look at what happens if we don’t assume that the spin bit causes the wave function to collapse. Instead, we’ll just model it as becoming fully entangled with the path of the particle, so that the state evolution over time looks like the following:

Now if we observe the particle’s position on the screen, the probability distribution we’ll observe is given by the Born rule. Assuming that we don’t observe the states of the spin bits, there are now two qualitatively indistinguishable branches of the wave function for each possible position on the screen. This means that the total probability for any given landing position will be given by the sum of the probabilities of each branch:

But hold on! Our final result is identical to the classically expected result! We just get the probability of the particle getting to |j⟩ from |A⟩, multiplied by the probability of being at |A⟩ in the first place (50%), plus the probability of the particle going from |B⟩ to |j⟩ times the same 50% for the particle getting to |B⟩.

In other words, our prediction is that we’d observe the classical pattern of a bunch of individual particles, each going through exactly one slit, with 50% going through the top slit and 50% through the bottom. The interference has vanished, even though we never assumed that the wave function collapsed!

What this shows is that wave function collapse is not required to get particle-like behavior. All that’s necessary is that the different branches of the superposition end up not interfering with each other. And all that’s necessary for that is environmental decoherence, which is exactly what we had with the single spin bit!

In other words, environmental decoherence is sufficient to produce the same type of behavior that we’d expect from wave function collapse. This is because interference will only occur between non-orthogonal branches of the wave function, and the branches become orthogonal upon decoherence (by definition). A particle can be in a superposition of multiple states but still act as if it has collapsed!

Now, maybe we want to say that the particle’s wave function is collapsed when its position is measured by the screen. But this isn’t necessary either! You could just say that the detector enters into a superposition and quickly decoheres, such that the different branches of the wave function (one for each possible detector state) very suddenly become orthogonal and can no longer interact. And then you could say that the collapse only really happens once a conscious being observes the detector! Or you could be a Many-Worlder and say that the collapse never happens (although then you’d have to figure out where the probabilities are coming from in the first place).

You might be tempted to say at this point: “Well, then all the different theories of wave function collapse are empirically equivalent! At least, the set of theories that say ‘wave function collapse = total decoherence + other necessary conditions possibly’. Since total decoherence removes all interference effects, the results of all experiments will be indistinguishable from the results predicted by saying that the wave function collapsed at some point!”

But hold on! This is forgetting a crucial fact: decoherence is reversible, while wave function collapse is not!!!

Let’s say that you run the same setup before with the spin bit recording the information about which slit the particle went through, but then we destroy that information before it interacts with the environment in any way, therefore removing any traces of the measurement. Now the two branches of the wave function have “recohered,” meaning that what we’ll observe is back to the interference pattern! (There’s a VERY IMPORTANT caveat, which is that the time period during which we’re destroying the information stored in the spin bit must be before the particle hits the detector screen and the state of the screen couples to its environment, thus decohering with the record of which slit the particle went through).

If you’re a collapse purist that says that wave function collapse = total decoherence (i.e. orthogonality of the relevant branches of the wave function), then you’ll end up making the wrong prediction! Why? Well, because according to you, the wave function collapsed as soon as the information was recorded, so there was no “other branch of the wave function” to recohere with once the information was destroyed!

This has some pretty fantastic implications. Since IN PRINCIPLE even the type of decoherence that occurs when your brain registers an observation is reversible (after all, the Schrodinger equation is reversible), you could IN PRINCIPLE recohere after an observation, allowing the branches of the wave function to interfere with each other again. These are big “in principle”s, which is why I wrote them big. But if you could somehow do this, then the “Consciousness Causes Collapse” theory would give different predictions from Many-Worlds! If your final observation shows evidence of interference, then “consciousness causes collapse” is wrong, since apparently conscious observation is not sufficient to cause the other branches of the wave function to vanish. Otherwise, if you observe the classical pattern, then Many Worlds is wrong, since the observation indicates that the other branches of the wave function were gone for good and couldn’t come back to recohere.

This suggests a general way to IN PRINCIPLE test any theory of wave function collapse: Look at processes right beyond the threshold where the theory says wave functions collapse. Then implement whatever is required to reverse the physical process that you say causes collapse, thus recohering the branches of the wave function (if they still exist). Now look to see if any evidence of interference exists. If it does, then the theory is proven wrong. If it doesn’t, then it might be correct, and any theory of wave function collapse that demands a more stringent standard for collapse (including Many-Worlds, the most stringent of them all) is proven wrong.

# On decoherence

Consider the following simple model of the double-slit experiment:

A particle starts out at |O⟩, then evolves via the Schrödinger equation into an equal superposition of being at position |A⟩ (the top slit) and being at position |B⟩ (the bottom slit).

To figure out what happens next, we need to define what would happen for a particle leaving from each individual slit. In general, we can describe each possibility as a particular superposition over the screen.

Since quantum mechanics is linear, the particle that started at |O⟩ will evolve as follows:

If we now look at any given position |j⟩ on the screen, the probability of observing the particle at this position can be calculated using the Born rule:

Notice that the first term is what you’d expect to get for the probability of a particle leaving |A⟩ being observed at position |j⟩ and the second term is the probability of a particle from |B⟩ being observed at |j⟩. The final two terms are called interference terms, and they give us the non-classical wave-like behavior that’s typical of these double-slit setups.

Now, what we just imagined was a very idealized situation in which the only parts of the universe that are relevant to our calculation are the particle, the two slits and the detector. But in reality, as the particle is traveling to the detector, it’s likely going to be interacting with the environment. This interaction is probably going to be slightly different for a particle taking the path through |A⟩ than for a particle taking the path through |B⟩, and these differences end up being immensely important.

To capture the effects of the environment in our experimental setup, let’s add an “environment” term to all of our states. At time zero, when the particle is at the origin, we’ll say that the environment is in some state |ε0⟩. Now, as the particle traverses the path to |A⟩ or to |B⟩, the environment might change slightly, so we need to give two new labels for the state of the environment in each case. |εA⟩ will be our description for the state of the environment that would result if the particle traversed the path from |O⟩ to |A⟩, and |εB⟩ will be the label for the state of the environment resulting from the particle traveling from |O⟩ to |B⟩. Now, to describe our system, we need to take the tensor product of the vector for our particle’s state and the vector for the environment’s state:

Now, what is the probability of the particle being observed at position j? Well, there are two possible worlds in which the particle is observed at position j; one in which the environment is in state |εA⟩ and the other in which it’s in state |εB⟩. So the probability will just be the sum of the probabilities for each of these possibilities.

This final equation gives us the general answer to the double slit experiment, no matter what the changes to the environment are. Notice that all that is relevant about the environment is the overlap term ⟨εAB⟩, which we’ll give a special name to:

This term tells us how different the two possible end states for the environment look. If the overlap is zero, then the two environment states are completely orthogonal (corresponding to perfect decoherence of the initial superposition). If the overlap is one, then the environment states are identical.

And look what we get when we express the final probability in terms of this term!

Perfect decoherence gives us classical probabilities, and perfect coherence gives us the ideal equation we found in the first part of the post! Anything in between allows the two states to interfere with each other to some limited degree, not behaving like totally separate branches of the wavefunction, nor like one single branch.

# The problem with the many worlds interpretation of quantum mechanics

The Schrodinger equation is the formula that describes the dynamics of quantum systems – how small stuff behaves.

One fundamental feature of quantum mechanics that differentiates it from classical mechanics is the existence of something called superposition. In the same way that a particle can be in the state of “being at position A” and could also be in the state of “being at position B”, there’s a weird additional possibility that the particle is in the state of “being in a superposition of being at position A and being at position B”. It’s necessary to introduce a new word for this type of state, since it’s not quite like anything we are used to thinking about.

Now, people often talk about a particle in a superposition of states as being in both states at once, but this is not technically correct. The behavior of a particle in a superposition of positions is not the behavior you’d expect from a particle that was at both positions at once. Suppose you sent a stream of small particles towards each position and looked to see if either one was deflected by the presence of a particle at that location. You would always find that exactly one of the streams was deflected. Never would you observe the particle having been in both positions, deflecting both streams.

But it’s also just as wrong to say that the particle is in either one state or the other. Again, particles simply do not behave this way. Throw a bunch of electrons, one at a time, through a pair of thin slits in a wall and see how they spread out when they hit a screen on the other side. What you’ll get is a pattern that is totally inconsistent with the image of the electrons always being either at one location or the other. Instead, the pattern you’d get only makes sense under the assumption that the particle traveled through both slits and then interfered with itself.

If a superposition of A and B is not the same as “A and B’ and it’s not the same as ‘A or B’, then what is it? Well, it’s just that: a superposition! A superposition is something fundamentally new, with some of the features of “and” and some of the features of “or”. We can do no better than to describe the empirically observed features and then give that cluster of features a name.

Now, quantum mechanics tells us that for any two possible states that a system can be in, there is another state that corresponds to the system being in a superposition of the two. In fact, there’s an infinity of such superpositions, each corresponding to a different weighting of the two states.

The Schrödinger equation is what tells how quantum mechanical systems evolve over time. And since all of nature is just one really big quantum mechanical system, the Schrödinger equation should also tell us how we evolve over time. So what does the Schrödinger equation tell us happens when we take a particle in a superposition of A and B and make a measurement of it?

The answer is clear and unambiguous: The Schrödinger equation tells us that we ourselves enter into a superposition of states, one in which we observe the particle in state A, the other in which we observe it in B. This is a pretty bizarre and radical answer! The first response you might have may be something like “When I observe things, it certainly doesn’t seem like I’m entering into a superposition… I just look at the particle and see it in one state or the other. I never see it in this weird in-between state!”

But this is not a good argument against the conclusion, as it’s exactly what you’d expect by just applying the Schrödinger equation! When you enter into a superposition of “observing A” and “observing B”, neither branch of the superposition observes both A and B. And naturally, since neither branch of the superposition “feels” the other branch, nobody freaks out about being superposed.

But there is a problem here, and it’s a serious one. The problem is the following: Sure, it’s compatible with our experience to say that we enter into superpositions when we make observations. But what predictions does it make? How do we take what the Schrödinger equation says happens to the state of the world and turn it into a falsifiable experimental setup? The answer appears to be that we can’t. At least, not using just the Schrödinger equation on its own. To get out predictions, we need an additional postulate, known as the Born rule.

This postulate says the following: For a system in a superposition, each branch of the superposition has an associated complex number called the amplitude. The probability of observing any particular branch of the superposition upon measurement is simply the square of that branch’s amplitude.

For example: A particle is in a superposition of positions A and B. The amplitude attached to A is 0.8. The amplitude attached to B is 0.4. If we now observe the position of the particle, we will find it to be at either A with probability (.6)2 (i.e. 36%), or B with probability (.8)2 (i.e. 64%).

Simple enough, right? The problem is to figure out where the Born rule comes from and what it even means. The rule appears to be completely necessary to make quantum mechanics a testable theory at all, but it can’t be derived from the Schrödinger equation. And it’s not at all inevitable; it could easily have been that probabilities associated with the amplitude were gotten by taking absolute values rather than squares. Or why not the fourth power of the amplitude? There’s a substantive claim here, that probabilities associate with the square of the amplitudes that go into the Schrödinger equation, that needs to be made sense of. There are a lot of different ways that people have tried to do this, and I’ll list a few of the more prominent ones here.

## The Copenhagen Interpretation

(Prepare to be disappointed.) The Copenhagen interpretation, which has historically been the dominant position among working physicists, is that the Born rule is just an additional rule governing the dynamics of quantum mechanical systems. Sometimes systems evolve according to the Schrödinger equation, and sometimes according to the Born rule. When they evolve according to the Schrödinger equation, they split into superpositions endlessly. When they evolve according to the Born rule, they collapse into a single determinate state. What determines when the systems evolve one way or the other? Something measurement something something observation something. There’s no real consensus here, nor even a clear set of well-defined candidate theories.

If you’re familiar with the way that physics works, this idea should send your head spinning. The claim here is that the universe operates according to two fundamentally different laws, and that the dividing line between the two hinges crucially on what we mean by the words “measurement and “observation. Suffice it to say, if this was the right way to understand quantum mechanics, it would go entirely against the spirit of the goal of finding a fundamental theory of physics. In a fundamental theory of physics, macroscopic phenomena like measurements and observations need to be built out of the behavior of lots of tiny things like electrons and quarks, not the other way around. We shouldn’t find ourselves in the position of trying to give a precise definition to these words, debating whether frogs have the capacity to collapse superpositions or if that requires a higher “measuring capacity”, in order to make predictions about the world (as proponents of the Copenhagen interpretation have in fact done!).

The Copenhagen interpretation is not an elegant theory, it’s not a clearly defined theory, and it’s fundamentally at tension with the project of theoretical physics. So why has it been, as I said, the dominant approach over the last century to understanding quantum mechanics? This really comes down to physicists not caring enough about the philosophy behind the physics to notice that the approach they are using is fundamentally flawed. In practice, the Copenhagen interpretation works. It allows somebody working in the lab to quickly assess the results of their experiments and to make predictions about how future experiments will turn out. It gives the right empirical probabilities and is easy to implement, even if the fuzziness in the details can start to make your head hurt if you start to think about it too much. As Jean Bricmont said, “You can’t blame most physicists for following this ‘shut up and calculate’ ethos because it has led to tremendous develop­ments in nuclear physics, atomic physics, solid­ state physics and particle physics.” But the Copenhagen interpretation is not good enough for us. A serious attempt to make sense of quantum mechanics requires something more substantive. So let’s move on.

## Objective Collapse Theories

These approaches hinge on the notion that the Schrödinger equation really is the only law at work in the universe, it’s just that we have that equation slightly wrong. Objective collapse theories add slight nonlinearities to the Schrödinger equation so that systems sometimes spread out in superpositions and other times collapse into definite states, all according to one single equation. The most famous of these is the spontaneous collapse theory, according to which quantum systems collapse with a probability that grows with the number of particles in the system.

This approach is nice for several reasons. For one, it gives us the Born rule without requiring a new equation. It makes sense of the Born rule as a fundamental feature of physical reality, and makes precise and empirically testable predictions that can distinguish it from from other interpretations. The drawback? It makes the Schrödinger equation ugly and complicated, and it adds extra parameters that determine how often collapse happens. And as we know, whenever you start adding parameters you run the risk of overfitting your data.

## Hidden Variable Theories

These approaches claim that superpositions don’t really exist, they’re just a high-level consequence of the unusual behavior of the stuff at the smallest level of reality.  They deny that the Schrödinger equation is truly fundamental, and say instead that it is a higher-level approximation of an underlying deterministic reality. “Deterministic?! But hasn’t quantum mechanics been shown conclusively to be indeterministic??” Well, not entirely. For a while there was a common sentiment amongst physicists that John Von Neumann and others had proved beyond a doubt that no deterministic theory could make the predictions that quantum mechanics makes. Later subtle mistakes were found in these purported proofs that left a door open for determinism. Today there are well-known fleshed-out hidden variable theories that successfully reproduce the predictions of quantum mechanics, and do so fully deterministically.

The most famous of these is certainly Bohmian mechanics, also called pilot wave theory. Here’s a nice video on it if you’d like to know more, complete with pretty animations. Bohmian mechanics is interesting, appear to work, give us the Born rule, and is probably empirically distinguishable from other theories (at least in principle). A serious issue with it is that it requires nonlocality, which is a challenge to any attempt to make it consistent with special relativity. Locality is such an important and well-understood feature of our reality that this constitutes a major challenge to the approach.

## Many-Worlds / Everettian Interpretations

Ok, finally we talk about the approach that is most interesting in my opinion, and get to the title of this post. The Many-Worlds interpretation says, in essence, that we were wrong to ever want more than the Schrödinger equation. This is the only law that governs reality, and it gives us everything we need. Many-Worlders deny that superpositions ever collapse. The result of us performing a measurement on a system in superposition is simply that we end up in superposition, and that’s the whole story!

So superpositions never collapse, they just go deeper into superposition. There’s not just one you, there’s every you, spread across the different branches of the wave function of the universe. All these yous exist beside each other, living out all your possible life histories.

But then where does Many-Worlds get the Born rule from? Well, uh, it’s kind of a mystery. The Born rule isn’t an additional law of physics, because the Schrödinger equation is supposed to be the whole story. It’s not an a priori rule of rationality, because as we said before probabilities could have easily gone as the fourth power of amplitudes, or something else entirely. But if it’s not an a posteriori fact about physics, and also not an a priori knowable principle of rationality, then what is it?

This issue has seemed to me to be more and more important and challenging for Many-Worlds the more I have thought about it. It’s hard to see what exactly the rule is even saying in this interpretation. Say I’m about to make a measurement of a system in a superposition of states A and B. Suppose that I know the amplitude of A is much smaller than the amplitude of B. I need some way to say “I have a strong expectation that I will observe B, but there’s a small chance that I’ll see A.” But according to Many-Worlds, a moment from now both observations will be made. There will be a branch of the superposition in which I observe A, and another branch in which I observe B. So what I appear to need to say is something like “I am much more likely to be the me in the branch that observes B than the me that observes A.” But this is a really strange claim that leads us straight into the thorny philosophical issue of personal identity.

In what sense are we allowed to say that one and only one of the two resulting humans is really going to be you? Don’t both of them have equal claim to being you? They each have your exact memories and life history so far, the only difference is that one observed A and the other B. Maybe we can use anthropic reasoning here? If I enter into a superposition of observing-A and observing-B, then there are now two “me”s, in some sense. But that gives the wrong prediction! Using the self-sampling assumption, we’d just say “Okay, two yous, so there’s a 50% chance of being each one” and be done with it. But obviously not all binary quantum measurements we make have a 50% chance of turning out either way!

Maybe we can say that the world actually splits into some huge number of branches, maybe even infinite, and the fraction of the total branches in which we observe A is exactly the square of the amplitude of A? But this is not what the Schrödinger equation says! The Schrödinger equation tells exactly what happens after we make the observation: we enter a superposition of two states, no more, no less. We’re importing a whole lot into our interpretive apparatus by interpreting this result as claiming the literal existence of an infinity of separate worlds, most of which are identical, and the distribution of which is governed by the amplitudes.

What we’re seeing here is that Many-Worlds, by being too insistent on the reality of the superposition, the sole sovereignty of the Schrödinger equation, and the unreality of collapse, ends up running into a lot of problems in actually doing what a good theory of physics is supposed to do: making empirical predictions. The Many-Worlders can of course use the Born Rule freely to make predictions about the outcomes of experiments, but they have little to say in answer to what, in their eyes, this rule really amounts to. I don’t know of any good way out of this mess.

Basically where this leaves me is where I find myself with all of my favorite philosophical topics; totally puzzled and unsatisfied with all of the options that I can see.

# Deriving the Lorentz transformation

My last few posts have been all about visualizing the Lorentz transformation, the coordinate transformation in special relativity. But where does this transformation come from? In this post, I’ll derive it from basic principles. I saw this derivation first probably a year ago, and have since tried unsuccessfully to re-find the source.  It isn’t the algebraically simplest derivation I’ve seen, but it is the conceptually simplest. The principles we’ll use to derive the transformation should all seem extremely obvious to you.

So let’s dive straight in!

The Lorentz transformation in full generality is a 4D matrix that tells you how to transform spacetime coordinates in one inertial reference frame to spacetime coordinates in another inertial reference frame. It turns out that once you’ve found the Lorentz transformation for one spatial dimension, it’s quite simple to generalize it to three spatial dimensions, so for simplicity we’ll just stick to the 1D case. The Lorentz transformation also allows you to transform to a coordinate system that is both translated some distance and rotated some angle. Both of these are pretty straightforward, and work the way we intuitively think rotation and translation should work. So I’ll not consider them either. The interesting part of the Lorentz transformation is what happens when we translate to reference frames that are co-moving (moving with respect to one another). Strictly speaking, this is called a Lorentz boost. That’s what I’ll be deriving for you: the 1D Lorentz boost.

So, we start by imagine some reference frame, in which an event is labeled by its temporal and spatial coordinates: t and x. Then we look at a new reference frame moving at velocity v with respect to the starting reference frame. We describe the temporal and spatial coordinates of the same event in the new coordinate system: t’ and x’. In general, these new coordinates can be any function whatsoever of the starting coordinates and the velocity v.

To narrow down what these functions f and g might be, we need to postulate some general relationship between the primed and unprimed coordinate system.

So, our first postulate!

## 1. Straight lines stay straight.

Our first postulate is that all observers in inertial reference frames will agree about if an object is moving at a constant velocity. Since objects moving at constant velocities are straight lines on diagrams of position vs time, this is equivalent to saying that a straight path through spacetime in one reference frame is a straight path through spacetime in all reference frames.

More formally, if x is proportional to t, then x’ is proportional to t’ (though the constant of proportionality may differ).

This postulate turns out to be immensely powerful. There is a special name for the types of transformations that keep straight lines straight: they are linear transformations. (Note, by the way, that the linearity is only in the coordinates t and x, since those are the things that retain straightness. There is no guarantee that the dependence on v will be linear, and in fact it will turn out not to be.)

These transformations are extremely simple, and can be represented by a matrix. Let’s write out the matrix in full generality:

We’ve gone from two functions (f and g) to four (A, B, C, and D). But in exchange, each of these four functions is now only a function of one variable: the velocity v. For ease of future reference, I’ve chosen to name the matrix T(v).

So, our first postulate gives us linearity. On to the second!

## 2. An object at rest in the starting reference frame is moving with velocity -v in the moving reference frame

This is more or less definitional. If somebody tells you that they had a function that transformed coordinates from one reference frame to a moving reference frame, then the most basic check you can do to see if they’re telling the truth is verify that objects at rest in the starting reference frame end up moving in the final reference frame. And again, it seems to follow from what it means for the reference frame to be moving right at 1 m/s that the initially stationary objects should end up moving left at 1 m/s.

Let’s consider an object sitting at rest at x = 0 in the starting frame of reference. Then we have:

We can plug this into our matrix to get a constraint on the functions A and C:

Great! We’ve gone from four functions to three!

## 3. Moving to the left at velocity v and to the right at the same velocity is the same as not moving at all

More specifically: Start with any reference frame. Now consider a new reference frame that is moving at velocity v with respect to the starting reference frame. Now, from this new reference frame, consider a third reference frame that is moving at velocity -v. This third reference frame should be identical to the one we started with. Got it?

Formally, this is simply saying the following:

(I is the identity matrix.)

To make this equation useful, we need to say more about T(-v). In particular, it would be best if we could express T(-v) in terms of our three functions A(v), B(v), and D(v). We do this with our next postulate:

## 4. Moving at velocity -v is the same as turning 180°, then moving at velocity v, then turning 180° again.

Again, this is quite self-explanatory. As a geometric fact, the reference frame you end up with by turning around, moving at velocity v, and then turning back has got to be the same as the reference frame you’d end up with by moving at velocity -v. All we need to formalize this postulate is the matrix corresponding to rotating 180°.

There we go! Rotating by 180° is the same as taking every position in the starting reference frame and flipping its sign. Now we can write our postulate more precisely:

Now we can finally use Postulate 3!

Doing a little algebra, we get…

(You might notice that we can only conclude that A = D if we reject the possibility that A = B = 0. We are allowed to do this because allowing A = B = 0 gives us a trivial result in which a moving reference frame experiences no time. Prove this for yourself!)

Now we have managed to express all four of our starting functions in terms of just one!

So far our assumptions have been grounded by almost entirely a priori considerations about what we mean by velocity. It’s pretty amazing how far we got with so little! But to progress, we need to include one final a posteriori postulate, that which motivated Einstein to develop special relativity in the first place: the invariance of the speed of light.

## 5. Light’s velocity is c in all reference frames.

The motivation for this postulate comes from mountains of empirical evidence, as well as good theoretical arguments from the nature of light as an electromagnetic phenomenon. We can write it quite simply as:

Plugging in our transformation, we get:

Multiplying the time coordinate by c must give us the space coordinate:

And we’re done with the derivation!

Summarizing our five postulates:

And our final result:

# Swapping the past and future

There are a few more cool things you can visualize with the special relativity program from my last post.

First of all, a big theme of the last post was the ambiguity of temporal orderings. It’s easy to see the temporal ordering of events when there are only three, but gets harder when you have many many events. Let’s actually display the temporal order on the visualization, so that we can see how it changes for different frames of reference.

Looking at this second GIF, you can see the immense ambiguity that there is in the temporal order of events.

Now, where things get even more interesting is when we consider the spacetime coordinates of events that are not in your future light cone. Check this out:

Here’s a more detailed image of the paths traced out by events as you change your velocity:

Instead of just looking at events in your future light cone, we’re now also looking at events outside of your light cone!

We chose to look at a bunch of events that are initially all in your future (in the frame of reference where v = 0). Notice now that as we vary the velocity, some of these events end up at earlier times than you! In other words, by changing your frame of reference, events that were in your future can end up in your past. And vice versa; events in the past of one frame of reference can be in the future in the other.

We can see this very clearly by considering just two events.

In the v = 0 frame, Red and Green are simultaneous with you. But for v > 0, Green is before Red is before you, and for v < 0, Green is after Red is after you. The lesson is the following: when considering events outside of your light cone there is no fact of the matter about what events are in your future and which ones are in your past.

Now, notice that in the above GIFs we never see events that are in causal contact leave causal contact, or vice versa. This holds true in general. While things certainly do get weirder when considering events outside your light cone, it is still the case that all observers will agree on what events are in causal contact with one another. And just like before, the temporal ordering of events in causal contact does not depend on your frame of reference. In other words, basketballs are always tossed before they go through the net, even outside your light cone.

The same holds when considering interactions between a pair of events that straddle either side of your light cone:

If A is in B’s light cone from one frame of reference, then A is in B’s light cone from all frames of reference. And if A is out of B’s light cone in one frame of reference, then it is out of B’s light cone in all frames of reference. Once again, we see that special relativity preserves as absolute our bedrock intuitions about causality, even when many of our intuitions about time’s objectivity fall away.

Now, all of the implications of special relativity that I’ve discussed so far have been related to time and causality. But there’s also some strange stuff that happens with space. For instance, let’s consider a series of events corresponding to an object sitting at rest some distance away from you. On our diagram this looks like the following:

What does this look like when we if we are moving towards the object? Obviously the object should now be getting closer to us, so we expect the red line to tilt inwards towards the x = 0 point. Here’s what we see at 80% of the speed of light:

As we expected, the object now rushes towards us from our frame of reference, and quickly passes us by and moves off to the left. But notice the spatial distortion in the image! At the present moment (t = 0), the object looks significantly closer than it was previously. (You can see this by starting from the center point and looking to the right to see how much distance you cover before intersecting with the object. This is the distance to the object at t = 0.)

This is extremely unusual! Remember, the moving frame of reference is at the exact same spatial position at t = 0 as the still frame of reference. So whether I am moving towards an object or standing still appears to change how far away the object presently is!

This is the famous phenomenon of length contraction. If we imagine placing two objects at different distances from the origin, each at rest with respect to the v = 0 frame, then moving towards them would result in both of them getting closer to us as well as each other, and thus shrinking! Evidently when we move, the universe shrinks!

One last effect we can see in the diagram appears to be a little at odds with what I’ve just said. This is that the observed distance between yourself and the object increases as you move towards it (and as the actual distance shrinks). Why? Well, what you observe is dictated by the beams of light that make it to your eye. So at the moment t = 0, what you are observing is everything along the two diagonals in the bottom half of the images. And in the second image, where you are moving towards the object, the place where the object and diagonal intersect is much further away than it is in the first image! Evidently, moving towards an object makes it appear further away, even though in reality it is getting closer to you!

This holds as a general principle. The reason? When you observe an object, you are really observing it as it was some time in the past (however much time it took for light to reach your eye). And when you move towards an object, that past moment you are observing falls further into the past. (This is sort of the flip-side of time dilation.) Since you are moving towards the object, looking further into the past means looking at the object when it was further away from you. And so therefore the object ends up appearing more distant from you than before!

There’s a bunch more weird and fascinating effects that you can spot in these types of visualizations, but I’ll stop there for now.

# Visualizing Special Relativity

I’ve been thinking a lot about special relativity recently, and wrote up a fun program for visualizing some of its stranger implications. Before going on to these visualizations, I want to recommend the Youtube channel MinutePhysics, which made a fantastic primer on the subject. I’ll link the first few of these here, as they might help with understanding the rest of the post. I highly recommend the entire series, even if you’re already pretty familiar with the subject.

Now, on to the pretty images! I’m still trying to determine whether it’s possible to embed applets in my posts, so that you can play with the program for yourself. Until I figure that out, GIFs will have to suffice.

Let me explain what’s going on in the image.

First of all, the vertical direction is time (up is the future, down is the past), and the horizontal direction is space (which is 1D for simplicity). What we’re looking at is the universe as described by an observer at a particular point in space and time. The point that this observer is at is right smack-dab in the center of the diagram, where the two black diagonal lines meet. These lines represent the observer’s light cone: the paths through spacetime that would be taken by beams of light emitted in either direction. And finally, the multicolored dots scattered in the upper quadrant represent other spacetime events in the observer’s future.

Now, what is being varied is the velocity of the observer. Again, keep in mind that the observer is not actually moving through time in this visualization. What is being shown is the way that other events would be arranged spatially and temporally if the observer had different velocities.

Take a second to reflect on how you would expect this diagram to look classically. Obviously the temporal positions of events would not depend upon your velocity. What about the spatial positions of events? Well, if you move to the right, events in your future and to the right of you should be nearer to you than they would be had you not been in motion. And similarly, events in your future left should be further to the left. We can easily visualize this by plugging in the classical Galilean transformation:

Just as we expected, time positions stay constant and spatial positions shift according to your velocity! Positive velocity (moving to the right) moves future events to the left, and negative velocity moves them to the right. Now, technically this image is wrong. I’ve kept the light paths constant, but even these would shift under the classical transformation. In reality we’d get something like this:

Of course, the empirical falsity of this prediction that the speed of light should vary according to your own velocity is what drove Einstein to formulate special relativity. Here’s what happens with just a few particles when we vary the velocity:

What I love about this is how you can see so many effects in one short gif. First of all, the speed of light stays constant. That’s a good sign! A constant speed of light is pretty much the whole point of special relativity. Secondly, and incredibly bizarrely, the temporal positions of objects depend on your velocity!! Objects to your future right don’t just get further away spatially when you move away from them, they also get further away temporally!

Another thing that you can see in this visualization is the relativity of simultaneity. When the velocity is zero, Red and Blue are at the same moment of time. But if our velocity is greater than zero, Red falls behind Blue in temporal order. And if we travel at a negative velocity (to the left), then we would observe Red as occurring after Blue in time. In fact, you can find a velocity that makes any two of these three points simultaneous!

This leads to the next observation we can make: The temporal order of events is relative! The orderings of events that you can observe include Red-Green-Blue, Green-Red-Blue, Green-Blue-Red, and Blue-Green-Red. See if you can spot them all!

This is probably the most bonkers consequence of special relativity. In general, we cannot say without ambiguity that Event A occurred before or after Event B. The notion of an objective temporal ordering of events simply must be discarded if we are to hold onto the observation of a constant speed of light.

Are there any constraints on the possible temporal orderings of events? Or does special relativity commit us to having to say that from some valid frames of reference, the basketball going through the net preceded the throwing of the ball? Well, notice that above we didn’t get all possible orders… in particular we didn’t have Red-Blue-Green or Blue-Red-Green. It turns out that in general, there are some constraints we can place on temporal orderings.

Just for fun, we can add in the future light cones of each of the three events:

Two things to notice: First, all three events are outside each others’ light cones. And second, no event ever crosses over into another event’s light cone. This makes some intuitive sense, and gives us a constant that will hold true in all reference frames: Events that are outside each others’ light cones from one perspective, are outside each others’ light cones from all perspectives. Same thing for events that are inside each others’ light cones.

Conceptually, events being inside each others’ light cones corresponds to them being in causal contact. So another way we can say this is that all observers will agree on what the possible causal relationships in the universe are. (For the purposes of this post, I’m completely disregarding the craziness that comes up when we consider quantum entanglement and “spooky action at a distance.”)

Now, is it ever possible for events in causal contact to switch temporal order upon a change in reference frame? Or, in other words, could effects precede their causes? Let’s look at a diagram in which one event is contained inside the light cone of another:

Looking at this visualization, it becomes quite obvious that this is just not possible! Blue is fully contained inside the future light cone of Red, and no matter what frame of reference we choose, it cannot escape this. Even though we haven’t formally proved it, I think that the visualization gives the beginnings of an intuition about why this is so. Let’s postulate this as another absolute truth: If Event A is contained within the light cone of Event B, all observers will agree on the temporal order of the two events. Or, in plainer language, there can be no controversy over whether a cause precedes its effects.

I’ll leave you with some pretty visualizations of hundreds of colorful events transforming as you change reference frames:

And finally, let’s trace out the set of possible space-time locations of each event.

Try to guess what geometric shape these paths are! (They’re not parabolas.) Hint.

# Fractals and Epicycles

There is no bilaterally-symmetrical, nor eccentrically-periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.

Norwood Russell Hanson, “The Mathematical Power of Epicyclical Astronomy”

A friend recently showed me this image…

…and thus I was drawn into the world of epicycles and fractals.

Epicycles were first used by the Greeks to reconcile observational data of the motions of the planets with the theory that all bodies orbit the Earth in perfect circles. It was found that epicycles allowed astronomers to retain their belief in perfectly circular orbits, as well as the centrality of Earth. The cost of this, however, was a system with many adjustable parameters (as many parameters as there were epicycles).

There’s a somewhat common trope about adding on endless epicycles to a theory, the idea being that by being overly flexible and accommodating of data you lose epistemic credibility. This happens to fit perfectly with my most recent posts on model selection and overfitting! The epicycle view of the solar system is one that is able to explain virtually any observational data. (There’s a pretty cool reason for this that has to do with the properties of Fourier series, but I won’t go into it.) The cost of this is a massive model with many parameters. The heliocentric model of the solar system, coupled with the Newtonian theory of gravity, turns out to be able to match all the same data with far fewer adjustable parameters. So by all of the model selection criteria we went over, it makes sense to switch over from one to the other.

Of course, it is not the case that we should have been able to tell a priori that an epicycle model of the planets’ motions was a bad idea. “Every planet orbits Earth on at most one epicycle”, for instance, is a perfectly reasonable scientific hypothesis… it just so happened that it didn’t fit the data. And adding epicycles to improve the fit to data is also not bad scientific practice, so long as you aren’t ignoring other equally good models with fewer parameters.)

Okay, enough blabbing. On to the pretty pictures! I was fascinated by the Hilbert curve drawn above, so I decided to write up a program of my own that generates custom fractal images from epicycles. Here are some gifs I created for your enjoyment:

## Negative doubling of angular velocity

(Each arm rotates in the opposite direction of the previous arm, and at twice its angular velocity. The length of each arm is half that of the previous.)

## Negative trebling

Here’s a still frame of the final product for N = 20 epicycles:

## ωn ~ (n+1) 2n

(or, the Fractal Frog)

## ωn ~ 2n, rn ~ 1/n2

And here’s a still frame of N = 20:

(All animations were built using Processing.py, which I highly recommend for quick and easy construction of visualizations.)

# Clarifying self-defeating beliefs

In a previous post, I mentioned self-defeating beliefs as a category that I am confused about. I wrote:

### How should we reason about self defeating beliefs?

The classic self-defeating belief is “This statement is a lie.” If you believe it, then you are compelled to disbelieve it, eliminating the need to believe it in the first place. Broadly speaking, self-defeating beliefs are those that undermine the justifications for belief in them.

Here’s an example that might actually apply in the real world: Black holes glow. The process of emission is known as Hawking radiation. In principle, any configuration of particles with a mass less than the black hole can be emitted from it. Larger configurations are less likely to be emitted, but even configurations such as a human brain have a non-zero probability of being emitted. Henceforth, we will call such configurations black hole brains.

Now, imagine discovering some cosmological evidence that the era in which life can naturally arise on planets circling stars is finite, and that after this era there will be an infinite stretch of time during which all that exists are black holes and their radiation. In such a universe, the expected number of black hole brains produced is infinite (a tiny finite probability multiplied by an infinite stretch of time), while the expected number of “ordinary” brains produced is finite (assuming a finite spatial extent as well).

What this means is that discovering this cosmological evidence should give you an extremely strong boost in credence that you are a black hole brain. (Simply because most brains in your exact situation are black hole brains.) But most black hole brains have completely unreliable beliefs about their environment! They are produced by a stochastic process which cares nothing for producing brains with reliable beliefs. So if you believe that you are a black hole brain, then you should suddenly doubt all of your experiences and beliefs. In particular, you have no reason to think that the cosmological evidence you received was veridical at all!

I don’t know how to deal with this. It seems perfectly possible to find evidence for a scenario that suggests that we are black hole brains (I’d say that we havealready found such evidence, multiple times). But then it seems we have no way to rationally respond to this evidence! In fact, if we do a naive application of Bayes’ theorem here, we find that the probability of receiving any evidence in support of black hole brains to be 0!

So we have a few options. First, we could rule out any possible skeptical scenarios like black hole brains, as well as anything that could provide anyamount of evidence for them (no matter how tiny). Or we could accept the possibility of such scenarios but face paralysis upon actually encountering evidence for them! Both of these seem clearly wrong, but I don’t know what else to do.

A friend (whose blog Compassionate Equilibria you should definitely check out) left a comment in response, saying:

I think I feel somewhat less confused about self-defeating beliefs (at least when considering the black hole brain scenario maybe I would feel more confused about other cases).

It seems like the problem might be when you say “imagine discovering some cosmological evidence that the era in which life can naturally arise on planets circling stars is finite, and that after this era there will be an infinite stretch of time during which all that exists are black holes and their radiation.” Presumably, whatever experience you had that you are interpreting as this cosmological evidence is an experience that you would actually be very unlikely to have given that you exist in that universe and as a result shouldn’t be interpreted as evidence for existing in such a universe. Instead you would have to think about in what kind of universe would you be most likely to have those experiences that naively seemed to indicate living in a universe with an infinity of black hole brains.

This could be a very difficult question to answer but not totally intractable. This also doesn’t seem to rule out starting with a high prior in being a black hole brain and it seems like you might even be able to get evidence for being a black hole brain (although I’m not sure what this would be; maybe having a some crazy jumble of incoherent experiences while suddenly dying?).

I think this is a really good point that clears up a lot of my confusion on the topic. My response ended up being quite long, so I’ve decided to make it its own post.

*** My response starts here ***

The key point that I was stuck on before reading this comment was the notion that this argument puts a strong a priori constraint on the types of experiences we can expect to have. This is because P(E) is near zero when E strongly implies a theory and that theory undermines E.

Your point, which seems right, is: It’s not that it’s impossible or near impossible to observe certain things that appear to strongly suggest a cosmology with an infinity of black hole brains. It’s that we can observe these things, and they aren’t actually evidence for these cosmologies (for just the reasons you laid out).

That is, there just aren’t observations that provide evidence for radical skeptical scenarios. Observations that appear to provide such evidence, prove to not do so upon closer examination. It’s about the fact that the belief that you are a black hole brain is by construction unmotivateable: this is what it means to say P(E) ~ 0. (More precisely, the types of observations that actually provide evidence for black hole brains are those that are not undermined by the belief in black hole brains. Your “crazy jumble of incoherent experiences” might be a good example of this. And importantly, basically any scientific evidence of the sort that we think could adjudicate between different cosmological theories will be undermined.)

One more thing as I digest this: Previously I had been really disturbed by the idea that I’d heard mentioned by Sean Carroll and others that one criterion for a feasible cosmology is that it doesn’t end up making it highly likely that we are black hole brains. This seemed like a bizarrely strong a priori constraint on the types of theories we allow ourselves to consider. But this actually makes a lot of sense if conceived of not as an a priori constraint but as a combination of two things: (1) updating on the strong experiential evidence that we are not black hole brains (the extremely structured and self-consistent nature of our experiences) and (2) noticing that these theories are very difficult to motivate, as most pieces of evidence that intuitively seem to support them actually don’t upon closer examination.

So (1) the condition that P(E) is near zero is not necessarily a constraint on your possible experiences, and (2) it makes sense to treat cosmologies that imply that we are black hole brains as empirically unsound and nearly unmotivateable.

Now, I’m almost all the way there, but still have a few remaining hesitations.

One thing is that things get more confusing when you break an argument for black hole brains down into its component parts and try to figure out where exactly you went wrong. Like, say you already have a whole lot of evidence that after a finite length of time, the universe will be black holes forever, but don’t yet know about Hawking radiation. So far everything is fine. But now scientists observe Hawking radiation. From this they conclude that black holes radiate, though they don’t have a theory of the stochastic nature of the process that entails that it can in principle produce brains. They then notice that Hawking radiation is actually predicted by combining aspects of QM and GR, and see that this entails that black holes can produce brains. Now they have all the pieces that together imply that they are black hole brains, but at which step did they go wrong? And what should they conclude now? They appear to have developed a mountain of solid evidence that when put together (and combined with some anthropic reasoning) straightforwardly imply that they are black hole brains. But this can’t be the case, since this would undermine the evidence they started with.

We can frame this as a multilemma. The general reasoning process that leads to the conclusion that we are black hole brains might look like:

1. We observe nature.
2. We generate laws of physics from these observations.
3. We predict from the laws of physics that there is a greater abundance of black hole brains than normal brains.
4. We infer from (3) that we are black hole brains (via anthropic reasoning).

Either this process fails at some point, or we should believe that we are black hole brains. Our multilemma (five propositions, at least one of which must be accepted) is thus:

1. Our observations of nature were invalid.
2. Our observations were valid, but our inference of laws of physics from them was invalid.
3. Our inference of laws of physics from our observations were valid, but our inference from these laws of there being a greater abundance of black hole brains than normal brains was invalid.
4.  Our inference from the laws of there being a greater abundance of black hole brains from normal brains was valid, but the anthropic step was invalid.
5. We are black hole brains.

Clearly we want to deny (5). I also would want to deny (3) and (4) – I’m imagining them to be fairly straightforward deductive steps. (1) is just some form of skepticism about our access to nature, which I also want to deny. The best choice, it looks like, is (2): our inductive inference of laws of physics from observations of nature is flawed in some way. But even this is a hard bullet to bite. It’s not sufficient to just say that other laws of physics might equally well or better explain the data. What is required is to say that in fact our observations don’t really provide compelling evidence for QM, GR, and so on.

So the end result is that I pretty much want to deny every possible way the process could have failed, while also denying the conclusion. But we have to deny something! This is clearly not okay!

Summing up: The remaining disturbing thing to me is that it seems totally possible to accidentally run into a situation where your best theories of physics inevitably imply (by a process of reasoning each step of which you accept is valid) that you are a black hole brain, and I’m not sure what to do next at that point.