Order 1: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 2: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 3: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 4: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y |
Order 5: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 6: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
Order 7: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 8: 5 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y | |||
| Y | |||
Order 9: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y |
Order 10: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
Order 11: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 12: 5 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y | |||
Order 13: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 14: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
Order 15: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y |
Order 16: 14 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y | |||
| Y | |||
| Y | |||
| Y | |||
Order 17: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 18: 5 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y | |||
Order 19: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 20: 5 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Y | |||
Order 21: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
Order 22: 2 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| Dih11 |
Order 23: 1 Group
| Abelian | Cyclic | Simple | |
| Y | Y | Y |
Order 24: 14 Groups
| Abelian | Cyclic | Simple | |
| Y | Y | ||
| ℤ12 × ℤ2 = ℤ6 × ℤ4 | Y | ||
| ℤ6 × ℤ22 = ℤ3 × ℤ23 | Y | ||
| Dih12 | |||
| Dih6 × ℤ2 | |||
| Dih4 × ℤ3 | |||
| S3 × ℤ4 | |||
| Dic3 × ℤ2 | |||
| Dic2 × ℤ3 | |||
| ℤ3 ⋊ ℤ8 | |||
| ℤ3 ⋊ Dih4 | |||
Order 25: 2 Groups
| Abelian | Cyclic | Simple | |
| ℤ25 | Y | Y | |
| ℤ52 | Y |
Order 26: 2 Groups
| Abelian | Cyclic | Simple | |
| ℤ26 = ℤ13 × ℤ2 | Y | Y | |
| Dih13 |
Order 27: 5 Groups
| Abelian | Cyclic | Simple | |
| ℤ27 | Y | Y | |
| ℤ9 × ℤ3 | Y | ||
| ℤ33 | Y | ||
| ℤ32 ⋊ ℤ3 | |||
| ℤ9 ⋊ ℤ3 |
Order 28: 3 Groups
| Abelian | Cyclic | Simple | |
| ℤ28 = ℤ7 × ℤ4 | Y | Y | |
| ℤ14 × ℤ2 = ℤ7 × ℤ22 | Y | ||
| Dih14 | |||
| Z7 ⋊ Z4 |
Order 29: 1 Group
| Abelian | Cyclic | Simple | |
| ℤ29 | Y | Y | Y |
Order 30: 4 Groups
| Abelian | Cyclic | Simple | |
| ℤ30 = ℤ15 × ℤ2 = ℤ10 × ℤ3 = ℤ6 × ℤ5 | Y | Y | |
| Dih15 | |||
| Dih5 × ℤ3 | |||
| S3 × ℤ5 |
Order 31: 1 Group
(Order p)
| Abelian | Cyclic | Simple | |
| ℤ31 | Y | Y | Y |
Order 32: 51 Groups
I’m not going to list these all here, but seven of them are abelian.
(All cycle graphs stolen from Wikipedia)
Notable Groups
A5: Smallest simple group that isn’t cyclic. Order 60.
ℤ22: Smallest non-cyclic group.
Dih3: Smallest non-abelian group.
A4: First example where n divides |G| but there is no element of order n. (n = 6)
Z7 ⋊ Z3: Smallest non-abelian group of odd size.
Dih3: Smallest group with a normal subgroup that isn’t isomorphic to one of its subgroups.
General Patterns
1 group of order p
2 groups of order p2
5 groups of order p3
15 groups of order p4, for p > 2
2 groups of order pq for q-1 divisible by p
1 group of order pq for q-1 not divisible by p