Logic on Planet Zorko

A group of Zorkan mathematicians are sitting around having a conversation in a language that you are unfamiliar with. You are listening in with a translator. This translator is an expert in formal logic, and has decided to play the following game with you. He says:

“After listening to the full conversation, I will translate all the sentences that were said for you. But I won’t translate them into English; I want something more universal. Instead, I will choose a formal language that captures the mathematical content of all the sentences said, while leaving out the vagaries and subtleties of the Zorkan language. I will describe to you the semantics of the formal language I choose, if you don’t already know it.”

“Furthermore,” (says the translator) “I happen to be intimately familiar with Zorkan society and culture. The Zorkans are having a discussion about one particular mathematical structure, and I know which one that is. The mathematicians are all fantastically precise reasoners, such that none of them ever says a sentence that is false of the structure that they are discussing.”

(So for instance if they are talking about the natural numbers, then no mathematician will say “0 = 1”, and if they are talking about abelian groups, then no mathematician will say “∃x∃y (xy ≠ yx)”. But they could say “∃x∃y (xy ≠ yx)” if they are talking about non-abelian groups.)

You know nothing about Zorkan psychology, besides that the Zorkan way of life is so utterly foreign to you that you cannot reliably assume that the mathematical structures that come most naturally to you will also come naturally to them. It might be, for instance, that nonstandard models of arithmetic are much more intuitive to them than the natural numbers. You cannot assume that the structure they are discussing is the one that you think is “most natural”; you can only conclude this if one of them says a sentence that is true of that model and no others.

The conversation finishes, and you are tasked with answering the following two questions:

(1) What structure are they talking about?
(2) Can you come up with a verification procedure for the mathematicians’ sentences (including possible future sentences they might say on the topic)?

So, that’s the setup. Now, the question I want you to consider is the following: Suppose that the structure that the mathematicians have in mind is actually the natural numbers. Is there some conversation, any conversation at all (even allowing infinitely long conversations, and uncomputable conversations – conversations which cannot be produced as the output of any Turing machine), that the mathematicians could have, and some translation of this conversation, such that you can successfully answer both (1) and (2)? If so, what is that conversation? And if not, then why not?

✯✯✯

Let’s work out some simple examples.

Example 1

Suppose the conversation is translated into a propositional language with three atomic propositions {P, Q, R}.

Mathematician A: “P ∨ Q”
Mathematician B: “(Q ∨ R) → (¬P)”
Mathematician C: “R”

From this conversation, you can deduce that the model they are talking about is the one that assigns “False” to P, “True” to Q, and “True” to R.

M: {P is false, Q is true, R is true}

This is the answer to the question 1!

As for the second question, we want to know if there’s some general procedure that produces all the future statements the mathematicians could make. For instance, the set generated by our procedure should include (Q ∧ R) but not (Q ∧ P).

It turns out that such a procedure does exist, and is not too difficult to write out and implement.

Example 2

Take the above conversation and modify it slightly:

Mathematician A: “P ∨ Q”
Mathematician B: “(Q ∨ R) → (¬P)”
Mathematician C: “¬R”

If you work it out, you’ll see that question 1 can no longer be answered unambiguously. The problem is that there are multiple models of the sentences that the mathematicians are saying:

M1: {P is false, Q is true, R is false}
M2: {P is true, Q is false, R is false}

So even though they have one particular structure in mind, you don’t have enough information from their conversation to figure out exactly what that structure is.

Now let’s think about the answer to question 2. We don’t know whether the mathematicians are thinking about M1 or M2, and M1 and M2 differ in what truth value they assign the proposition P. So we can’t construct an algorithm that will generate the set of all their possible future statements, as this would require us to know, in particular, whether P is true or false in the model that they have in mind.

We might suspect that this holds true generally: if you can’t answer question 1, then you won’t be able to answer question 2 either. But we might also wonder: if we can answer question 1, then can we also always answer question 2?

The answer is no, as the next example will show.

Example 3

For this conversation, the translation is in second-order logic. This will allow us to talk about more interesting mathematical structures than before; namely, structures that have a domain of objects on which functions and predicates can act. In particular, we’re in a second-order language with one constant symbol “c” and one function symbol “f”. Here’s the conversation:

Mathematician A: ¬∃x (f(x) = c)
Mathematician B: ¬∃x∃y ((f(x) = f(y)) ∧ ¬(x = y))
Mathematician C: ∀R (R(c) ∧ ∀x(R(x) → R(f(x))) → ∀x R(x))

Notice that the only truly second-order sentence is the third one, in which we quantify over a predicate variable R rather than an individual variable x, y, z, …. But the second-order status of this sentence it makes it that the translator could not have possibly translated this conversation into a first-order language, much less a propositional language.

This time, questions 1 and 2 are much harder to answer than before. But if you work it out, you’ll see that there is exactly one mathematical structure that satisfies all three of the mathematicians’ statements. And that structure is the natural numbers!

So, we know exactly what structure the mathematicians have in mind. But can we also answer question 2 in the positive? Can we produce some verification procedure that will allow us to generate all the future possible sentences the mathematicians could say? Unfortunately, the answer is no. There is no sound and complete proof system for second-order logic, so in particular, we have no general algorithm for producing all the truths in this second order language. So sad.

Example 4

Now let’s move to first-order logic for our final example. The language of translation will be a first order language with a constant symbol for every natural number {0,1,2,3,…}, function symbols for ordinary arithmetic {+, ×}, and relation symbols for orders {≥}

Imagine that the conversation consists of literally all the first-order sentences in the language that are true of the natural numbers. Anything which you can say in the language, and which is true as a statement about ℕ, will be said at some point. This will obviously be a very long conversation, and in fact infinitely long, but that’s fine. It will include sentences like “0 ≠ 1”, “0 ≠ 2”, “0 ≠ 3”, and so on.  (These Zorkans are extremely thorough.)

Given this conversation, can we answer (1) and (2)? Take a guess; the answer may surprise you!

It turns out that even though we can answer (2) positively – we can actually produce an algorithm that will generate one-by-one all the possible future statements of the mathematicians (which really means all the sentences in the language that are true of the natural numbers), we cannot answer (1) positively! There are multiple distinct mathematical structures that are compatible with the entirety of true statements about natural numbers in the language. Earlier we hypothesized that any time we have a negative answer to (1), we will also have a negative answer to (2). But this is not true! We can verify all the true statements about natural numbers in the language… without even knowing that we’re actually talking about the natural numbers! This is an important and unintuitive consequence of the expressive limitations (and in particular, of the compactness) of first-order logic.

The Takeaway

We had an example where we could answer both (1) and (2) for a simple mathematical structure (a model of propositional logic). And we saw examples for natural numbers where we could answer (1) but not (2), as well as examples where we could answer (2) but not (1). But we haven’t yet seen an example for natural numbers where we had both (1) and (2). This is no coincidence!

It is actually a consequence of the theorem I proved and discussed in my last post that no such such conversation can exist. When structures at least as complicated as the natural numbers are being discussed in some language (call it L), you cannot simultaneously (1) know for sure what structure is being talked about and (2) have an algorithmic verification system for L-sentences about the structure.

5 thoughts on “Logic on Planet Zorko

  1. So we can’t have (a verification procedure for any thing the Second Order Logic literate Zorkans can come up with about natural numbers) and also have the Zorkans potentially able to produce any given true Second Order Logic statement about natural numbers.

    1. Yes, that’s right, and that’s an important clarification. I’m implicitly assuming that the Zorkans have some ability to grasp all the true statements about natural numbers, which might not be reasonable.

      1. It cannot be all three of these:
        (1) We can unambiguously tell from their conversation that they are talking about the natural numbers.
        (2) We have a verification procedure for their future possible sentences.
        (3) The Zorkans have the capacity to potentially come to realize the truth of any true statement about natural numbers.

Leave a Reply to squarishbracket Cancel reply